Please wait a minute...
Big Data Mining and Analytics  2020, Vol. 3 Issue (4): 259-279    DOI: 10.26599/BDMA.2020.9020006
    
Survey on Data Analysis in Social Media: A Practical Application Aspect
Qixuan Hou(),Meng Han*(),Zhipeng Cai*()
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
Data-driven Intelligence Research (DIR) Lab of College of Computing and Software Engineering, Kennesaw State University, Kennesaw, GA 30060, USA
Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA
Download: PDF (1746 KB)      HTML  
Export: BibTeX | EndNote (RIS)      

Abstract  

Social media has more than three billion users sharing events, comments, and feelings throughout the world. It serves as a critical information source with large volumes, high velocity, and a wide variety of data. The previous studies on information spreading, relationship analyzing, and individual modeling, etc., have been heavily conducted to explore the tremendous social and commercial values of social media data. This survey studies the previous literature and the existing applications from a practical perspective. We outline a commonly used pipeline in building social media-based applications and focus on discussing available analysis techniques, such as topic analysis, time series analysis, sentiment analysis, and network analysis. After that, we present the impacts of such applications in three different areas, including disaster management, healthcare, and business. Finally, we list existing challenges and suggest promising future research directions in terms of data privacy, 5G wireless network, and multilingual support.



Key wordssocial media      topic analysis      time series analysis      sentiment analysis      network analysis      disaster management      bio-surveillance      business intelligence     
Received: 21 May 2020      Published: 07 December 2020
Corresponding Authors: Meng Han,Zhipeng Cai     E-mail: qhou6@gatech.edu;mhan9@kennesaw.edu;zcai@gsu.edu
About author: Qixuan Hou is a master student in analytics at Georgia Institute of Technology. She received the BS degree from Georgia Institute of Technology in 2019. Her research interests are in the area of data science, with experience executing data-driven solutions.|Meng Han is an assistant professor at the College of Computing and Software Engineering, Kennesaw State University. He received the PhD degree in computer science from Georgia State University in 2017. He is currently an IEEE member and an IEEE COMSOC member. He has the unique research experiences built upon big data, cyber data, and social data with academic achievements of 6 book chapters/books, more than 20 first-authored and more than 20 co-authored publications in international journals and conferences, with 4 best paper awards and 2 best paper runner-up awards. His research interests include data-driven intelligence, AI security & privacy, and blockchain technologies.|Zhipeng Cai received the MS and PhD degrees from University of Alberta in 2004 and 2008, respectively. He is currently an associate professor at the Department of Computer Science, Georgia State University (GSU). Prior to joining GSU, he was a research faculty at the School of Electrical and Computer Engineering, Georgia Institute of Technology. His research areas focus on networking, big data, data security, and artificial intelligence. He is the recipient of an NSF CAREER Award.
Cite this article:

Qixuan Hou,Meng Han,Zhipeng Cai. Survey on Data Analysis in Social Media: A Practical Application Aspect. Big Data Mining and Analytics, 2020, 3(4): 259-279.

URL:

http://bigdata.tsinghuajournals.com/10.26599/BDMA.2020.9020006     OR     http://bigdata.tsinghuajournals.com/Y2020/V3/I4/259

Fig. 1 Social media’s categories and their examples.
Fig. 2 Number of social media users in the world.
Fig. 3 Number of users using social media platforms from 2002 to 2019.
Fig. 4 Four challenges, four analysis techniques, and three impacts of social media-based applications.
Fig. 5 Common application pipeline.
YearReferenceMethodApplication
2010Cataldi et al.[18]QueriesCreate a navigable topic graph with emerging topics over time
2010Sizov[19]Topic modelingGeoFolk to discover latent topics
2010Song et al.[20]Topic modelingExplore spatio-temporal framework for related topic search
2012Han and Kang[21]QueriesIdentify the personalized relevance of social issues to targets
2012Song et al.[22]Topic modelingIdentify the personalized relevance of social issues to targets
2012Hu et al.[23]Topic modelingPropose a topic modeling with user features
2013Kamath et al.[24]HashtagsStudy the spatio-temporal dynamics of Twitter hashtags
2013Ma et al.[25]Topic modelingPropose Tag-Latent Dirichlet Allocation (TLDA) to bridge hash tags and topics
2013Bogdanov et al.[26]Topic modelingIdentify the personalized relevance of social issues to targets
2015Jang and Myaeng[27]Topic modelingAnalyze spatially oriented topic versatility
2015Yao et al.[28]Topic modelingAnalyze news trends in Twitter
2016Qian et al.[29]Topic modelingAnalyze multi-model event topic model
2016Musaev and Hou[30]QueriesDetect landslides with Twitter data
2016Rohani et al.[31]Topic modelingExplore an unsupervised topic modeling approach
2018Argyrou et al.[32]HashtagsPrepare training images for Automatic Image Annotation (AIA)
2018Ejaz et al.[33]Topic modelingAnalyze news using ontology
Table 1 Summary of previous works in topic analysis.
YearReferenceMethodApplication
2007Fu et al.[34]Visualization toolVisualize consumer-generated media
2010Mathioudakis and Koudas[35]Visualization toolTwitterMonitor: Trend detection
2011Yang and Leskoves[36]ClusteringDetect patterns of temporal variation
2012Zhao et al.[37]SmoothingIdentify event-related bursts
2012Chae et al.[38]Seasonal-trend decompositionDetect abnormal event
2014Ahn and Spangler[39]PredictionPredict sales
2014Kucher et al.[40]Visualization toolVisualize stance markers in online social media
2015Healy et al.[41]Peak detectionDetect events
2015Tsuboi et al.[42]PredictionPredict product purchases
2015Nusratullah et al.[43]Analyze varianceDetect changes in email notwork
2015Johnson and Ni[44]PredictionInfer dynamic consumer valuations
2015Zhao et al.[45]PredictionPredict the reposting number of micro-blog messages
2017Ni et al.[46]PredictionForecast the subway passenger flow
2017Dahouei[47]SmoothingIdentify hot topics
2017Comito et al.[48]Peak detectionIdentify deviation from user normal behavior
Table 2 Summary of previous works in time series analysis.
YearReferenceMethodApplication
2012Rui and Whinston[49]Learning-basedDesign business intelligence system
2013Yuan et al.[50]Lexicon-based & learning-basedSentiment classify Chinese micorblogs
2013Yu et al.[51]Learning-basedAnalyze firm equity value
2014Wang et al.[52]Learning-basedEnhance sentiment analysis technique
2016Wang et al.[53]Lexicon-basedBuild finer-grained sentiment analysis
Table 3 Summary of previous works in sentiment analysis.
YearReferenceMethodApplication
2003Popescul and Ungar[54]ClassificationPredict links
2007Noweell and Kleinberg[55]ClassificationPredict links
2010Cataldi et al.[18]Page rankDetect emerging topics
2011Rossetti et al.[56]ClassificationPredict links
2012Michalski et al.[57]Time seriesPredict links
2013Smith[58]VisualizationNodeXl: Visualizae network
2016Musaev and Hou[30]Page rankDetect landslides with Twitter data
2016Erlandsson et al.[59]Association rule learningIdentify influencers
2016Li et al.[60]Location-based social networksIdentify influencers
2017Zhao et al.[61]Degree/betweenness/closeness centralityIdentify influencers
2019Tang et al.[62]The second-order Independent Cascade (IC) modelIdentify influencers
Table 4 Summary of previous works in network analysis.
Fig. 6 Most used languages on Twitter in September 2013.
Fig. 7 Cellular generation evolution.
120].
">
Fig. 8 Global mobile video traffic from 2017 to 2022[120].
[1]   Kaplan A. M. and Haenlein M., Users of the world, unite! The challenges and opportunities of social media, Business Horizons, vol. 53, no. 1, pp. 59-68, 2010.
[2]   Howard P. N. and Parks M. R., Social media and political change: Capacity, constraint, and consequence, Journal of Communication, vol. 62, no. 2, pp. 359-362, 2012.
[3]   Carr C. T. and Hayes R. A., Social media: Defining, developing, and divining, Atlantic Journal of Communication, vol. 23, no. 1, pp. 46-65, 2015.
[4]   Data never sleeps 5.0, , 2020.
[5]   Ortiz-Ospina E., The rise of social media, , 2019.
[6]   Stieglitz S., Mirbabaie M., Ross B., and Neuberger C., Social media analytics—Challenges in topic discovery, data collection, and data preparation, International Journal of Information Management, vol. 39, pp. 156-168, 2018.
[7]   Moalla I., Nabli A., Bouzguenda L., and Hammami M., Data warehouse design approaches from social media: Review and comparison, Social Network Analysis and Mining, vol. 7, no. 1, p. 5, 2017.
[8]   Cao J. W., Basoglu K., Sheng H., and Lowry P. B., A systematic review of social networking research in information systems, Communications of the Association for Information Systems, vol. 36, no. 1, 2015.
[9]   Karimi S., Yin J., and Paris C., Classifying microblogs for disasters, in Proc. 18th Australasian Document Computing Symp., Brisbane, Australia, 2013, pp. 26-33.
[10]   Sakaki T., Okazaki M., and Matsuo Y., Earthquake shakes twitter users: Real-time event detection by social sensors, in Proc. 19th Int. Conf. World Wide Web, Raleigh, NC, USA, 2010, pp. 851-860.
[11]   Harris J. K., Mansour R., Choucair B., Olson J., Nissen C., and Bhatt J., Health department use of social media to identify foodborne illness, Chicago, IL, USA, 2013-2014, Morbidity and Mortality Weekly Report, vol. 63, no. 32, pp. 681-685, 2014.
[12]   Nsoesie E. O., Kluberg S. A., and Brownstein J. S., Online reports of foodborne illness capture foods implicated in official foodborne outbreak reports, Preventive Medicine, vol. 67, pp. 264-269, 2014.
[13]   Han M., Yan M. Y., Cai Z. P., and Li Y. S., An exploration of broader influence maximization in timeliness networks with opportunistic selection, Journal of Network and Computer Applications, vol. 63, pp. 39-49, 2016.
[14]   Xu P. P., Wu Y. C., Wei E. X., Peng T. Q., Liu S. X., Zhu J. J. H., and Qu H. M., Visual analysis of topic competition on social media, IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2012-2021, 2013.
[15]   Dou W. W., Wang X. Y., Skau D., Ribarsky W., and Zhou M. X., LeadLine: Interactive visual analysis of text data through event identification and exploration, presented at 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), Seattle, WA, USA, 2012, pp. 93-102.
[16]   Chen S. M., Yuan X. R., Wang Z. H., Guo C., Liang J., Wang Z. C., Zhang X. L., and Zhang J. W., Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data, IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 270-279, 2016.
[17]   Marcus A., Bernstein M. S., Badar O., Karger D. R., Madden S., and Miller R. C., Twitinfo: Aggregating and visualizing microblogs for event exploration, in Proc. SIGCHI Conf. Human Factors in Computing Systems, Vancouver, Canada, 2011, pp. 227-236.
[18]   Cataldi M., Di Caro L., and Schifanella C., Emerging topic detection on twitter based on temporal and social terms evaluation, in Proc. 10th Int. Workshop on Multimedia Data Mining, Washington, DC, USA, 2010, pp. 1-10.
[19]   Sizov S., GeoFolk: Latent spatial semantics in web 2.0 social media, in Proc. 3rd ACM Int.l Conf. Web Search and Data Mining, New York, NY, USA, 2010, pp. 281-290.
[20]   Song S. Y., Li Q. D., and Zheng N., A spatio-temporal framework for related topic search in micro-blogging, presented at International Conference on Active Media Technology, An A., Lingras P., Petty S., and Huang R., eds. Berlin, Germany: Springer, 2010, pp. 63-73.
[21]   Han S. C. and Kang B. H., Identifying the relevance of social issues to a target, presented at 2012 IEEE 19th Int. Conf. Web Services, Honolulu, HI, USA, 2012, pp. 666-667.
[22]   Song S. Y., Li Q. D., and Zheng X. L., Detecting popular topics in micro-blogging based on a user interest-based model, presented at 2012 Int. Joint Conf. Neural Networks (IJCNN), Brisbane, Australia, 2012, pp. 1-8.
[23]   Hu B., Song Z., and Ester M., User features and social networks for topic modeling in online social media, presented at 2012 IEEE/ACM Int. Conf. Advances in Social Networks Analysis and Mining, Istanbul, Turkey, 2012, pp. 202-209.
[24]   Kamath K. Y., Caverlee J., Lee K., and Cheng Z. Y., Spatio-temporal dynamics of online memes: A study of geo-tagged tweets, in Proc. 22nd Int. Conf. World Wide Web, Rio de Janeiro, Brazil, 2013, pp. 667-678.
[25]   Ma Z. Q., Dou W. W., Wang X. Y., and Akella S., Tag- latent dirichlet allocation: Understanding hashtags and their relationships, presented at 2013 IEEE/WIC/ACM Int. Joint Conf. Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Atlanta, GA, USA, 2013, pp. 260-267.
[26]   Bogdanov P., Busch M., Moehlis J., Singh A. K., and Szymanski B. K., The social media genome: Modeling individual topic-specific behavior in social media, in Proc. 2013 IEEE/ACM Int. Conf. Advances in Social Networks Analysis and Mining, Niagara, Canada, 2013, pp. 236-242.
[27]   Jang G. and Myaeng S. H., Analysis of spatially oriented topic versatility over time on social media, in Proc. 2015 IEEE/ACM Int. Conf. Advances in Social Networks Analysis and Mining, Paris, France, 2015, pp. 573-578.
[28]   Yao F. Z., Chang K. C. C., and Campbell R. H., Ushio: Analyzing news media and public trends in twitter, in Proc. 2015 IEEE/ACM 8th Int. Conf. Utility and Cloud Computing (UCC), Limassol, Cyprus, 2015, pp. 424-429.
[29]   Qian S. S., Zhang T. Z., Xu C. S., and Shao J., Multi-modal event topic model for social event analysis, IEEE Transactions on Multimedia, vol. 18, no. 2, pp. 233-246, 2016.
[30]   Musaev A. and Hou Q. X., Gathering high quality information on landslides from twitter by relevance ranking of users and tweets, presented at 2016 IEEE 2nd Int. Conf. Collaboration and Internet Computing(CIC), Pittsburgh, PA, USA, 2016, pp. 276-284.
[31]   Rohani V. A., Shayaa S., and Babanejaddehaki G., Topic modeling for social media content: A practical approach, presented at 2016 3rd Int. Conf. Computer and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia, 2016, pp. 397-402.
[32]   Argyrou A., Giannoulakis S., and Tsapatsoulis N., Topic modelling on Instagram hashtags: An alternative way to automatic image annotation? presented at 2018 13th Int. Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Zaragoza, Spain, 2018, pp. 61-67.
[33]   Ejaz A., Fatima S. K., Rajput Q. N., and Khoja S. A., Analyzing news from electronic media and topics discussed on social media using ontology, presented at 2018 5th Int. Conf. Social Networks Analysis, Management and Security (SNAMS), Valencia, Spain, 2018, pp. 349-354.
[34]   Fu T. C., Sze D. C. M., Leung P. K. C., Hung K. Y., and Chung F. L., Analysis and visualization of time series data from consumer-generated media and news archives, presented at 2007 IEEE/WIC/ACM Int. Conf. Web Intelligence and Intelligent Agent Technology-Workshops, Silicon Valley, CA, USA, 2007, pp. 259-262.
[35]   Mathioudakis M. and Koudas N., Twittermonitor: Trend detection over the twitter stream, in Proc. 2010 ACM SIGMOD Int. Conf. Management of Data, Indianapolis, IN, USA, 2010, pp. 1155-1158.
[36]   Yang J. and Leskovec J., Patterns of temporal variation in online media, in Proc. 4th ACM Int. Conf. Web Search and Data Mining, Hong Kong, China, 2011, pp. 177-186.
[37]   Zhao W. X., Shu B. H., Jiang J., Song Y., Yan H. F., and Li X. M., Identifying event-related bursts via social media activities, in Proc. 2012 Joint Conf. Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Korea, 2012, pp. 1466-1477.
[38]   Chae J., Thom D., Bosch H., Jang Y., Maciejewski R., Ebert D. S., and Ertl T., Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition, presented at 2012 IEEE Conf. Visual Analytics Science and Technology (VAST), Seattle, WA, USA, 2012, pp. 143-152.
[39]   Ahn H. I. and Spangler W. S., Sales prediction with social media analysis, presented at 2014 Annu. SRII Global Conf., San Jose, CA, USA, 2014, pp. 213-222.
[40]   Kucher K., Kerren A., Paradis C., and Sahlgren M., Visual analysis of stance markers in online social media, presented at 2014 IEEE Conf. Visual Analytics Science and Technology (VAST), Paris, France, 2014, pp. 259-260.
[41]   Healy P., Hunt G., Kilroy S., Lynn T., Morrison J. P., and Venkatagiri S., Evaluation of peak detection algorithms for social media event detection, presented at 2015 10th Int. Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Trento, Italy, 2015, pp. 1-9.
[42]   Tsuboi Y., Jatowt A., and Tanaka K., Product purchase prediction based on time series data analysis in social media, presented at 2015 IEEE/WIC/ACM Int. Conf. Web Intelligence and Intelligent Agent Technology (WI-IAT), Singapore, 2015, pp. 219-224.
[43]   Nusratullah K., Khan S. A., Shah A., and Butt W. H., Detecting changes in context using time series analysis of social network, presented at 2015 SAI Intelligent Systems Conf. (IntelliSys), London, UK, 2015, pp. 996-1001.
[44]   Johnson S. D. and Ni K. Y., A pricing mechanism using social media and web data to infer dynamic consumer valuations, presented at 2015 IEEE Int. Conf. Big Data (Big Data), Santa Clara, CA, USA, 2015, pp. 2868-2870.
[45]   Zhao K., Zhang Y. Q., Li B. G., and Zhou C. F., Repost number prediction of micro-blog on Sina Weibo using time series fitting and regression analysis, presented at 2015 Int. Conf. Identification, Information, and Knowledge in the Internet of Things (IIKI), Beijing, China, 2015, pp. 66-69.
[46]   Ni M., He Q., and Gao J., Forecasting the subway passenger flow under event occurrences with social media, IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1623-1632, 2017.
[47]   Dahouei E. A., A cloud-based dashboard for time series analysis on hot topics from social media, presented at 2017 Int. Conf. Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 2017, pp. 1-6.
[48]   Comito C., Falcone D., and Talia D., A peak detection method to uncover events from social media, presented at 2017 IEEE Int. Conf. Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 2017, pp. 459-467.
[49]   Rui H. X. and Whinston A., Designing a social-broadcasting-based business intelligence system, ACM Transactions on Management Information Systems (TMIS), vol. 2, no. 4, pp. 1-19, 2012.
[50]   Yuan B., Liu Y., and Li H., Sentiment classification in Chinese microblogs: Lexicon-based and learning-based approaches, International Proceedings of Economics Development and Research, vol. 68, pp. 1-5, 2013.
[51]   Yu Y., Duan W. J., and Cao Q., The impact of social and conventional media on firm equity value: A sentiment analysis approach, Decision Support Systems, vol. 55, no. 4, pp. 919-926, 2013.
[52]   Wang Z. X., Tong V. J. C., and Chin H. C., Enhancing machine-learning methods for sentiment classification of web data, in Information Retrieval Technology, Jaafar A., Ali N. M., Noah S. A. M., Smeaton A. F., Bruza P., Bakar Z. A., Jamil N., and Sembok T. M. T., eds. Cham, Switzerland: Springer, 2014, pp. 394-405.
[53]   Wang Z. X., Chong C. S., Lan L., Yang Y. P., Ho S. B., and Tong J. C., Fine-grained sentiment analysis of social media with emotion sensing, presented at 2016 Future Technologies Conf. (FTC), San Francisco, CA, USA, 2016, pp. 1361-1364.
[54]   Popescul A. and Ungar L. H., Statistical relational learning for link prediction, in Proc. Workshop on Learning Statistical Models from Relational Data at IJCAI-2003, Acapulco, Mexico, 2003, pp. 109-115.
[55]   Nowell D. L. and Kleinberg J., The link-prediction problem for social networks, Journal of the American Society for Information Science and Technology, vol. 58, no. 7, pp. 1019-1031, 2007.
[56]   Rossetti G., Berlingerio M., and Giannotti F., Scalable link prediction on multidimensional networks, presented at 2011 IEEE 11th Int. Conf. Data Mining Workshops, Vancouver, Canada, 2011, pp. 979-986.
[57]   Michalski R., Kazienko P., and Krol D., Predicting social network measures using machine learning approach, in Proc. 2012 Int. Conf. Advances in Social Networks Analysis and Mining, Washington, DC, USA, 2012, pp. 1056-1059.
[58]   Smith M. A., NodeXL: Simple network analysis for social media, presented at 2013 Int. Conf. Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 2013, pp. 89-93.
[59]   Erlandsson F., Bródka P., Borg A., and Johnson H., Finding influential users in social media using association rule learning, Entropy, vol. 18, no. 5, p. 164, 2016.
[60]   Li J., Cai Z. P., Yan M. Y., and Li Y. S., Using crowdsourced data in location-based social networks to explore influence maximization, presented at IEEE INFOCOM 2016—The 35th Annu. IEEE Int. Conf. Computer Communications, San Francisco, CA, USA, 2016, pp. 1-9.
[61]   Zhao X. H., Liu F. A., Wang J. L., and Li T. L., Evaluating influential nodes in social networks by local centrality with a coefficient, ISPRS International Journal of Geo-Information, vol. 6, no. 2, p. 35, 2017.
[62]   Tang W. Y., Luo G. C., Wu Y. B., Tian L., Zheng X., and Cai Z. P., A second-order diffusion model for influence maximization in social networks, IEEE Transactions on Computational Social Systems, vol. 6, no. 4, pp. 702-714, 2019.
[63]   Sprenger T. O., Essays on the information content of microblogs and their use as an indicator of real-world events, PhD dissertation, Technische Universit?t München, München, Germany, 2011.
[64]   Palshikar G. K., Simple algorithms for peak detection in time-series, , 2009.
[65]   Du P., Kibbe W. A., and Lin S. M., Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching, Bioinformatics, vol. 22, no. 17, pp. 2059-2065, 2006.
[66]   Lehmann J., Gon?alves B., Ramasco J. J., and Cattuto C., Dynamical classes of collective attention in twitter, in Proc. 21st Int. Conf. World Wide Web, Lyon, France, 2012, pp. 251-260.
[67]   Liu L. Y., Priestley J. L., Zhou Y. Y., Ray H. E., and Han M., A2Text-Net: A novel deep neural network for sarcasm detection, presented at 2019 IEEE 1st Int. Conf. Cognitive Machine Intelligence, Los Angeles, CA, USA, 2019, pp. 118-126.
[68]   Desai S. and Han M., Social media content analytics beyond the text: A case study of university branding in instagram, in Proc. 2019 ACM Southeast Conf., Kennesaw, GA, USA, 2019, pp. 94-101.
[69]   He J. S., Han M., Ji S. L., Du T. Y., and Li Z., Spreading social influence with both positive and negative opinions in online networks, Big Data Mining and Analytics, vol. 2, no. 2, pp. 100-117, 2019.
[70]   Banea C., Mihalcea R., and Wiebe J., A bootstrapping method for building subjectivity lexicons for languages with scarce resources, in Proc. Int. Conf. Language Resources and Evaluation, Marrakech, Morocco, 2008, pp. 2764-2767.
[71]   Strapparava C. and Valitutti A., WordNet-affect: An affective extension of WordNet, in Proc. 4th Int. Conf. Language Resources and Evaluation, Lisbon, Portugal, 2004, pp. 1083-1086.
[72]   Baccianella S., Esuli A., and Sebastiani F., SentiWordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining, in Proc. Int. Conf. Language Resources and Evaluation, Valletta, Malta, 2010, pp. 2200-2204.
[73]   Perikos I. and Hatzilygeroudis I., A framework for analyzing big social data and modelling emotions in social media, presented at 2018 IEEE 4th Int. Conf. Big Data Computing Service and Applications (BigDataService), Bamberg, Germany, 2018, pp. 80-84.
[74]   Han M., Yan M. Y., Cai Z. P., Li Y. S., Cai X. Q., and Yu J. G., Influence maximization by probing partial communities in dynamic online social networks, Transactions on Emerging Telecommunications Technologies, vol. 28, no. 4, p. e3054, 2017.
[75]   Han M., Yan M. Y., Li J. B., Ji S. L., and Li Y. S., Neighborhood-based uncertainty generation in social networks, Journal of Combinatorial Optimization, vol. 28, no. 3, pp. 561-576, 2014.
[76]   Han M., Duan Z. J., Ai C. Y., Lybarger F. W., Li Y. S., and Bourgeois A. G., Time constraint influence maximization algorithm in the age of big data, International Journal of Computational Science and Engineering, vol. 15, nos. 3&4, pp. 165-175, 2017.
[77]   Mykhalovskiy E. and Weir L., The global public health intelligence network and early warning outbreak detection, Canadian Journal of Public Health, vol. 97, no. 1, pp. 42-44, 2006.
[78]   Freifeld C. C., Mandl K. D., Reis B. Y., and Brownstein J. S., HealthMap: Global infectious disease monitoring through automated classification and visualization of internet media reports, Journal of the American Medical Informatics Association, vol. 15, no. 2, pp. 150-157, 2008.
[79]   Kshetri N. and Voas J., The economics of “fake news”, IT Professional, vol. 19, no. 6, pp. 8-12, 2017.
[80]   Report on ECDC/JRC collaboration on development of online tool for epidemic intelligence, , 2011.
[81]   Event-based surveillance, , 2020.
[82]   Severe weather 101-Floods, , 2020.
[83]   Cheong F. and Cheong C., Social media data mining: A social network analysis of tweets during the Australian 2010-2011 floods, presented at PACIS 2011—15th Pacific Asia Conf. Information Systems: Quality Research in Pacific, Brisbane, Australia, 2011, pp. 1-16.
[84]   Yates D. and Paquette S., Emergency knowledge management and social media technologies: A case study of the 2010 Haitian earthquake, International Journal of Information Management, vol. 31, no. 1, pp. 6-13, 2011.
[85]   Imran M., Elbassuoni S., Castillo C., Diaz F., and Meier P., Extracting information nuggets from disaster-related messages in social media, in Proc. 10th Int. ISCRAM Conf., Baden-Baden, Germany, 2013, pp. 1-10.
[86]   MacEachren A. M., Jaiswal A., Robinson A. C., Pezanowski S., Savelyev A., Mitra P., Zhang X., and Blanford J., SensePlace2: GeoTwitter analytics support for situational awareness, presented at 2011 IEEE Conf. Visual Analytics Science and Technology (VAST), Providence, RI, USA, 2011, pp. 181-190.
[87]   Musaev A., Jiang Z., Jones S., Sheinidashtegol P., and Dzhumaliev M., Detection of damage and failure events of road infrastructure using social media, in International Conference on Web Services, Jin H., Wang Q., and Zhang L. J., eds. Seattle, WA, USA: Springer, 2018, pp. 134-148.
[88]   Murthy D. and Gross A. J., Social media processes in disasters: Implications of emergent technology use, Social Science Research, vol. 63, pp. 356-370, 2017.
[89]   Sheth A., Citizen sensing, social signals, and enriching human experience, IEEE Internet Computing, vol. 13, no. 4, pp. 87-92, 2009.
[90]   Laituri M. and Kodrich K., On line disaster response community: People as sensors of high magnitude disasters using internet GIS, Sensors, vol. 8, no. 5, pp. 3037-3055, 2008.
[91]   Wichmann J., Being B2B social: A conversation with Maersk Line’s head of social media, , 2013.
[92]   Desai S. and Han M., Social media content analytics beyond the text: A case study of university branding in instagram, in Proc. 2019 ACM Southeast Conf., Kennesaw, GA, USA, 2019, pp. 94-101.
[93]   Choudhery D. and Leung C. K., Social media mining: prediction of box office revenue, in Proc. 21st Int. Database Engineering & Applications Symp., Bristol, UK, 2017, pp. 20-29.
[94]   Mangold W. G. and Faulds D. J., Social media: The new hybrid element of the promotion mix, Business Horizons, vol. 52, no. 4, pp. 357-365, 2009.
[95]   Attorney general Becerra publicly releases proposed regulations under the California consumer privacy act, , 2019.
[96]   European Commission, General data protection regulation, Article 4(1), , 2018.
[97]   Han M., Han Q. L., Li L. J., Li J., and Li Y. S., Maximising influence in sensed heterogeneous social network with privacy preservation, International Journal of Sensor Networks, vol. 28, no. 2, pp. 69-79, 2018.
[98]   Zheng X., Cai Z. P., Yu J. G., Wang C. K., and Li Y. S., Follow but no track: Privacy preserved profile publishing in cyber-physical social systems, IEEE Internet of Things Journal, vol. 4, no. 6, pp. 1868-1878, 2017.
[99]   Zheng X., Luo G. C., and Cai Z. P., A fair mechanism for private data publication in online social networks, IEEE Transactions on Network Science and Engineering, vol. 7, no. 2, pp. 880-891, 2020.
[100]   Han M., Li L., Xie Y., Wang J. B., Duan Z. J., Li J., and Yan M. Y., Cognitive approach for location privacy protection, IEEE Access, vol. 6, pp. 13 466-13 477, 2018.
[101]   Cai Z. P., He Z. B., Guan X., and Li Y. S., Collective data-sanitization for preventing sensitive information inference attacks in social networks, IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 4, pp. 577-590, 2018.
[102]   Castillo C., Mendoza M., and Poblete B., Information credibility on twitter, in Proc. 20th Int. Conf. World Wide Web, Hyderabad, India, 2011, pp. 675-684.
[103]   Sun S. Y., Liu H. Y., He J., and Du X. Y., Detecting event rumors on Sina Weibo automatically, in Asia-Pacific Web Conference, Ishikawa Y., Li J., Wang W., Zhang R., and Zhang W., eds. Berlin, Germany: Springer, 2013, pp. 120-131.
[104]   Yang F., Liu Y., Yu X. H., and Yang M., Automatic detection of rumor on Sina Weibo, in Proc. ACM SIGKDD Workshop on Mining Data Semantics, Beijing, China, 2012, pp. 1-7.
[105]   Kwon S., Cha M., Jung K., Chen W., and Wang Y. J., Prominent features of rumor propagation in online social media, presented at 2013 IEEE 13 th Int. Conf. Data Mining, Dallas, TX, USA, 2013, pp. 1103-1108.
[106]   Ennals R., Byler D., Agosta J. M., and Rosario B., What is disputed on the web? in Proc. 4th Workshop on Information Credibility, Raleigh, NC, USA, 2010, pp. 67-74.
[107]   Zhao Z., Resnick P., and Mei Q. Z., Enquiring minds: Early detection of rumors in social media from enquiry posts, in Proc. 24th Int. Conf. World Wide Web, Florence, Italy, 2015, pp. 1395-1405.
[108]   Sathanur A. V., Sui M., and Jandhyala V., Assessing strategies for controlling viral rumor propagation on social media—A simulation approach, presented at 2015 IEEE Int. Symp. Technologies for Homeland Security (HST), Waltham, MA, USA, 2015, pp. 1-6.
[109]   Kotteti C. M. M., Dong X. S., and Qian L. J., Multiple time-series data analysis for rumor detection on social media, presented at 2018 IEEE Int. Conf. Big Data (Big Data), Seattle, WA, USA, 2018, pp. 4413-4419.
[110]   Lin Y. G., Cai Z. P., Wang X. M., and Hao F., Incentive mechanisms for crowdblocking rumors in mobile social networks, IEEE Transactions on Vehicular Technology, vol. 68, no. 9, pp. 9220-9232, 2019.
[111]   Qin Y. Q., Chi M. M., Liu X., Zhang Y. F., Zeng Y. J., and Zhao Z. M., Classification of high resolution urban remote sensing images using deep networks by integration of social media photos, presented at IGARSS 2018-2018 IEEE Int. Geoscience and Remote Sensing Symp., Valencia, Spain, 2018, pp. 7243-7246.
[112]   Hoffmann E. J., Werner M., and Zhu X. X., Building instance classification using social media images, presented at 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France, 2019, pp. 1-4.
[113]   Jing M., Scotney B. W., Coleman S. A., and McGinnity M. T., The application of social media image analysis to an emergency management system, presented at 2016 11th Int. Conf. Availability, Reliability and Security (ARES), Salzburg, Austria, 2016, pp. 805-810.
[114]   Hou Q. X., Musaev A., Yang Y., and Pu C., A comparative study of increasing automation in the integration of multilingual social media information, presented at 2017 IEEE 3rd Int. Conf. Collaboration and Internet Computing (CIC), San Jose, CA, USA, 2017, pp. 319-327.
[115]   Xia L. S., Yamashita N., and Ishida T., Analysis on multilingual discussion for Wikipedia translation, presented at 2011 2nd Int. Conf. Culture and Computing, Kyoto, Japan, 2011, pp. 104-109.
[116]   Fuadvy M. J. and Ibrahim R., Multilingual sentiment analysis on social media disaster data, presented at 2019 Int. Conf. Electrical, Electronics and Information Engineering (ICEEIE), Denpasar, Indonesia, 2019, pp. 269-272.
[117]   Zhou X., Wan X., and Xiao J., Cross-lingual sentiment classification with bilingual document representation learning, in Proc. 54th Annu. Meeting of the Association for Computational Linguistics, Berlin, Germany, 2016, pp. 1403-1412.
[118]   Xie Y. S., Chen Z. Z., Zhang K. P., Cheng Y., Honbo D. K., Agrawal A., and Choudhary A. N., MuSES: Multilingual sentiment elicitation system for social media data, IEEE Intelligent Systems, vol. 29, no. 4, pp. 34-42, 2014.
[119]   Liu L. Y. and Han M., Privacy and security issues in the 5g-enabled internet of things, in 5G-Enabled Internet of Things, Wu Y. L., Huang H. J., Wang C. X., and Pan Y., eds. Boca Raton, FL, USA: CRC Press, 2019, pp. 241-268.
[120]   Cisco annual internet report (2018-2023) white paper, , 2020.
[121]   Mattisson S., Overview of 5g requirements and future wireless networks, presented at ESSCIRC 2017—43rd IEEE European Solid State Circuits Conf., Leuven, Belgium, 2017, pp. 1-6.
[122]   IAB, Live video streaming: A global perspective, , 2018.
[1] Balsam Alkouz, Zaher Al Aghbari, Jemal Hussien Abawajy. Tweetluenza: Predicting Flu Trends from Twitter Data[J]. Big Data Mining and Analytics, 2019, 2(4): 273-287.
[2] Mondher Bouazizi, Tomoaki Ohtsuki. Multi-Class Sentiment Analysis on Twitter: Classification Performance and Challenges[J]. Big Data Mining and Analytics, 2019, 2(3): 181-194.
[3] Wenmao Wu, Zhizhou Yu, Jieyue He. A Semi-Supervised Deep Network Embedding Approach Based on the Neighborhood Structure[J]. Big Data Mining and Analytics, 2019, 2(3): 205-216.